Semiconductor X-Ray Detectors

Tobias Eggert

Ketek GmbH

Semiconductor X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. GaAs Detectors
- 3. Outlook
- 4. Resume

Motivation

- Many discoveries and results of fundamental research are closely related to the quality of the instruments used
- Telescopes, Microscopes, Cameras
- New detector concepts enabled the discovery of many elementary particles (e⁺, v, J/ψ)
- X-ray astronomy → detectors with spatial and energy resolution
- Fully depleted pn-CCD

Why Semiconductor Detectors?

- Photons and charged particles ionize matter
- Gases: electron ion pairs are produced
- Semiconductors: electron hole pairs are produced
- Measurement of position and energy
- Pair creation energy in semiconductors is much lower than ionization energy in gases
- High density of solids → high interaction probability
- Integration of transistors and read-out electronics

Semiconductor Detectors

p-i-n configuration \rightarrow depletion zone

- Al \rightarrow saturation of free bonds
 - \rightarrow contacts p⁺
 - \rightarrow reflects visible light
- $\mathsf{p}^{\scriptscriptstyle +} \rightarrow$ maximum at the surface
 - \rightarrow no dead layer
 - → high electric field strength
- e⁻-hole pairs generated by radiation
- charge separated and collected
- current mode: current prop. to flux and energy
- single photon counting: signal amplitude prop. to deposited charge

Semiconductor X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. GaAs
- 3. Outlook
- 4. Resume

Applications in Basic Research

High Energy Physics

Silicon Strip detectors

position resolution: pitch $/\sqrt{12}$

Diode array for position measurement

Applications in Basic Research

High Energy Physics

Strip or pixel detectors as inner trackers \rightarrow position resolution

Applications in Basic Research

X-Ray Astronomy

Spectroscopy of cosmic x-ray sources Fully depleted pn-CCD on ESA's x-ray multi-mirror mission (XMM)

- Energy of fluorescence photon = difference of binding energies
- Moseleys Law: $E_{\rm F}$ prop. to Z^2
- Many transitions possible
- Transitions into K-shell: $K_{\alpha,\beta}$ photons ("peaks")
- Transitions into L-shell: $L_{\alpha \beta \gamma, \eta L}$ photons
- Higher fluorescence yield for high *Z* elements

Application

X-Ray Fluorescence Analysis (XRF)

Excitation of sample with X-rays

XRF-Analyse (X-Ray Fluorescence)

Untersuchung eines Leichentuchs (Antinopolis, III. Jahrhundert n.Chr., Vatikanische Museen)

Application XRF with scanning electron microscopes

Excitation of sample with electrons

Elektronenstrahl-Mikroanalyse mit Silizium-Driftdetektoren

Untersuchung einer Meteoritenprobe

Semiconductor X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. GaAs Detectors
- 3. Outlook
- 4. Resume

Planar Technology

Doping by ion implantation and pasitivation at 600 °C Contraction of at 600 °C Contraction of a field of the second of the secon

Phosphorus

Differences to conventional planar technology

- \rightarrow Wafer structured on both sides
- → Larger structures
- \rightarrow Low temperature processes
- \rightarrow Less diffusion of impurities
- \rightarrow Low leakage currents and high charge carrier life-times

Planar Technology

Important Semiconductor Properties

		Si	Ge	GaAs	SiC
atomic number		14	32	31 / 33	14 /12
atomic weight		28.09	72.59	144.63	40
density	g/cm ³	2.33	5.33	5.32	3.21
band gap (RT)	eV	1.12	0.66	1.42	3.0
av. energy for e-h pair	eV	3.65	2.85	4.2	~8.5
electron mobility $\mu_{ m e}$	cm ² /Vs	1500	3900	8500	~ 1000
hole mobility $\mu_{ m h}$	cm ² /Vs	450	1900	400	~ 100
minority carrier lifetime τ	S	2.5 · 10 ⁻³	10 ⁻³	~ 10 ⁻⁸	~ 10 ⁻⁶
μτ – product (e)	cm ² /V	2-5	5	~ 10 ⁻⁴	~ 10 ⁻³
$\mu\tau$ – product (h)	cm ² /V	1 – 2	2	~ 10 ⁻⁵	~ 10 ⁻⁴
intrinsic resistivity	Ωcm	2.3 · 10 ⁵	47	10 ⁸	> 10 ¹²
intrinsic carrier conc.	cm ⁻³	1.45 · 10 ¹⁰	2.5 · 10 ¹³	1.8 · 10 ⁶	10 ⁻⁶

pn-Junction for Detector Applications

diffusion of majority carriers

formation of depletion layers

fixed space charge of acceptors (A⁻) and donors (D⁺)

electric field due to space charge

band bending of the junction built in voltage

Properties of Si pn-Junction Detectors

The Response of Energy Dispersive X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics, Spectra, Efficiency Limits

Part B Silicon Drift Detectors

- 1. SDD structure
 - 2. Low Energy Measurements/Experimental Setup
 - 3. Calculation of Spectral Contributions
 - 4. Results
 - 5. Resume

Requirements on Spectrometers

Spectrum of Martian Soil

Spectrum of Martian Soil

Absorption Lengths of Si + Al

Quantum Efficiency

Conventional Radiation Detectors

- Main problem of pin diodes and conventional Si(Li)s:
- Capacitance prop. to area
- Large active area required for high sensitivity
- Low capacitance required for low noise
- The drift principles allows both, large area and low capacitance

The Response of Energy Dispersive X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics, Spectra, Efficiency Limits

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. GaAs Detectors
- 3. Outlook
- 4. Resume

Silicon Drift Detector (SDD)

- High resistivity, high purity n-type silicon (10¹²/cm³)
- pn junctions on both sides
- Drift rings at the front side, integrated voltage dividers
- Homogeneous entrance window at the back side

Silicon Drift Detector (SDD)

- Depletion from back contact towards bulk contact (n⁺, not shown)
- Vertical and lateral drift field \rightarrow small anode size \rightarrow low capacitance
- Low leakage currents, low noise, high energy resolution
- Thermoelectrically cooled to -20 °C (other detectors need 77 K)
- Current entrance window: large background for energies < 300 eV

Silicon Drift Detector (SDD)

- Integrated Junction Field Effect Transistor
- Energy resolution down to 135 eV (FWHM) at 5.9 keV
- No pickup noise, no microphony, low overall noise
- Shaping times 250 ns ... 1 μs (other detectors: 20 μs)
- Count-rate ability up to 10⁶/s, suited for high X-ray intensities

Drift Field Configuration

History

- 1970-76 Josef Kemmer develops planar technology for semiconductor detectors
- 1983 E. Gatti and P. Rehak introduce principle of silicon drift detector
- 1983 Cooperation between J. Kemmer, P. Rehak
 and MPI, first SDDs produced at TU München
- 1985-2001 Cooperation with MPI to develop new detector concepts: SDD with homogeneous entrance window, completely depleted pn-CCD for XMM X-ray telescope, DEPMOS, DEPFET
- 1991 Qualification of Kemmer's planar process for the MPI semiconductor laboratory completed
- 1998 First commercial SDD systems available
- 2003 2000th SDD system sold

Mounted Devices

• 5 mm², 10 mm²

 7 channel detector with 35 mm²

Mounted Devices

- Illuminated from back-side
- Anode continuously discharged \rightarrow no reset clock
- Standard: 8 µm Be window
- Polyimide window with Si grid also available
- N₂ filled housing (1 bar or 100 mbar)

Semiconductor X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. GaAs Detectors
- 3. Outlook
- 4. Resume

GaAs Detectors

- Silicon detectors with reasonable thicknesses (< 5 mm) are mainly sensitive to soft X-rays
- GaAs has higher Z and higher ρ → high absorption probability
- XRF application: detection of X-rays > 30 keV elements have higher fluorescence yield
- Hard X-rays (≈ 100 keV) used in medicine: radiography, fluoroscopy, and nuclear medicine

- Detector with high efficiency
 → reduces dose on patient
- Band gap of GaAs (1.42 eV) is high enough → operation at room temperature operation possible
- Band gap is low enough for good resolution (Fano limit 140 eV FWHM at 5.9 keV, pair creation energy 4.2 eV)
- Large bulk resistivity → high fields for charge collection
- Electron mobilities 6 x
 higher than Si → Fast signal

Production of GaAs Detectors

- No natural oxide → Production not as easy as in Si planar technology
- Thickness > 100 μ m required for high efficiency detection of hard X-rays and γ -rays and low detector capacitance
- Not possible with molecular beam epitaxy
- Maximum thickness with chemical vapor phase deposition epitaxy: $60 100 \ \mu m$
- Most promising: liquid phase technology (Prof. Andreev, loffe Institute)
- Energy resolution of 220 eV obtained with 0.04 mm² pixels @ 5.9 keV and -30 ℃
- Drift principle required to reduce capacitance
- Very important: high purity epitaxial layer

Semiconductor X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. GaAs Detectors
- 3. Outlook
- 4. Resume

Outlook

- Focus in the past: Silicon drift detectors and read-out electronics → spectrometer
- Competitors: High-end: Si(Li)s, HPGe (for γ) Low-end: pin-Diodes
- Future Targets:
 - SDDs with larger areas (> 10 mm²)
 - Less charge low at $E_0 < 300 \text{eV}$
 - Scintillator-covered SDDs for γ -rays
 - GaAs detectors for hard X-rays ($E_0 > 50 \text{ keV}$)

The Response of Energy Dispersive X-Ray Detectors

Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

Part B Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results

5. Resume

Resume

- Ketek's Silicon Drift Detector is a unique and established product for XRF and SEM applications
- Highly optimized production process \rightarrow low leakage currents
- Drift priciple \rightarrow low capacitance
- \rightarrow Low overall noise
- \rightarrow very good energy resolution
- \rightarrow high count-rate ability
- Future tasks:
 Expand energy range to both, higher and lower X-ray energies
 High E: GaAs detectors
 Low E: SDD with optimized entrace window
- www.ketek.biz / www.ketek.net
- Спасибо!

Interaction always by **photoelectric effect**

Compton effect unlikely

e⁻e⁺ pair creation impossible

